A spatially adaptive nonparametric regression image deblurring
نویسندگان
چکیده
منابع مشابه
A nonparametric procedure for blind image deblurring
Observed images are usually blurred versions of the true images, due to imperfections of the imaging devices, atmospheric turbulence, out of focus lens, motion blurs, and so forth. The major purpose of image deblurring is to restore the original image from its blurred version. A blurred image can be described by the convolution of the original image with a point spread function (psf) that chara...
متن کاملBayesian mixture of splines for spatially adaptive nonparametric regression
A Bayesian approach is presented for spatially adaptive nonparametric regression where the regression function is modelled as a mixture of splines. Each component spline in the mixture has associated with it a smoothing parameter which is defined over a local region of the covariate space. These local regions overlap such that individual data points may lie simultaneously in multiple regions. C...
متن کاملAdaptive-neighborhood image deblurring
This paper presents a new technique for the restoration of images degraded by a linear, shift-invariant blurring point-spread function (PSF) in the presence of additive white Gaussian noise. The algorithm uses overlapping variable-size, variable-shape adaptiveneighborhoods (ANs) to de ne stationary regions in the input image and obtains a spectral estimate of the noise in each AN region. This e...
متن کاملNon-Uniform Blind Deblurring with a Spatially-Adaptive Sparse Prior
Typical blur from camera shake often deviates from the standard uniform convolutional script, in part because of problematic rotations which create greater blurring away from some unknown center point. Consequently, successful blind deconvolution requires the estimation of a spatially-varying or non-uniform blur operator. Using ideas from Bayesian inference and convex analysis, this paper deriv...
متن کاملBayesian adaptive nonparametric M-regression
Nonparametric regression has been popularly used in curve fitting, signal denosing, and image processing. In such applications, the underlying functions (or signals) may vary irregularly, and it is very common that data are contaminated with outliers. Adaptive and robust techniques are needed to extract clean and accurate information. In this paper, we develop adaptive nonparametric M-regressio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Image Processing
سال: 2005
ISSN: 1057-7149
DOI: 10.1109/tip.2005.851705